Showing posts with label geology. Show all posts
Showing posts with label geology. Show all posts

Thursday, December 23, 2021

Walls and bubbles

 From the "just because" file:

Macro photos of a slice of rock picked up in a local antique shop. The rock, at least, is antique; the slicing and polishing probably not.

Looks like walls of a maze

Trying to imagine what processes would make these patterns

Tubes in bubbles

Again, just because. I can't give a name to this piece of stone; I don't know where it originated, but it intrigues me.

UPDATE: from a comment by Peter Allen in Geology of Vancouver Island (Facebook).

Agate. Silica deposited from an aqueous solution, the lines represent changes in concentration of the solution. The solution was under high temperatures and pressures.
AND UPDATE #2: From a link on the previous comment: Origin..., pg. 19.

As explained above, the mechanism of agate growth is still a mystery to scientists. ... Agates represent one of the most impressive examples of spontaneous pattern generation in the world, and studying agate crystal growth could help explain how natural patterns like these are generated without an external template. Agates are a noteworthy case of self-organization, both texturally and compositionally, and their origin has far-reaching geochemical, crystal-growth, and petrologic implications.

~~~~~~~~~~~~~~~~~~~~~~~~~~
Del archivo llamado "porque sí": fotos macro de una rebanada de piedra que compré en una tienda de antigüedades. La piedra es antigua; dudo que lo es el trabajo de rebanar y pulir.

Porque sí. No puedo identificar este tipo de piedra. No sé de donde vino, pero me inspira curiosidad.

ACTUALIZANDO: de un comentario por Peter Allen en la página Facebook, Geology of Vancouver Island.
Agata. Sílice depositado desde una solución acuática; las lineas muestran cambios de la concentración de la solución. La solución estaba bajo temperaturas y presiones altas.
Y ACTUALIZANDO UNA VEZ MAS: de un enlace en el comentario citado:

Como se explica arriba, el mecanismo del crecimiento de $gatas sigue siendo un misterio para los científicos. ... Las ágatas son uno de los ejemplos más impresionantes del origen espontáneo de modelo mundiales, y estudiar el crecimiento de los cristales puede ayudar a explicar como es que modelos naturales como estos se generan sin una esquema exterior. Las ágatas son un ejemplo notable de organización autónoma, tanto en su textura como en la composición, y su origen lleva consecuencias importantes en los campos de geoquíica, crecimiento de cristales, y petrológicos.


Wednesday, September 23, 2020

Glacier spoor

Fire up your imagination. Speed time up. Faster! Faster! Faster! Now go back a few millennia.

A Kraken rises out of the sea to the west of the continent, pushes into the sky, steaming, its flesh bubbling like a stew pot, hardening as it cools into grey rock, but still on the move. As it lifts into the cold air, it collects a white and blue coating of ice, thousands of metres thick. Rises still more; ice slides off slowly back into the ocean, creaking and grinding and scraping, carrying patches of the old skin with it, dropping pieces as it melts. The rocks bounce as the weight lifts, buckling and folding, cracking, surrendering more chunks to the retreating ice.

Slow time down again. Here we are. The Kraken appears to sleep under a green coverlet. Sometimes it shivers in its dreams.

That's Vancouver Island, from the tall basalt peaks to the pillow lavas in the interior, to the glacial erratics abandoned on the seashore, with the forests and seaweeds that clothe it.

At one end of a wide, sandy beach, the glaciers left their tracks ...

Long rock channel, shore to low tide mark.

Seaweed and small animals soften and pockmark the rocks.

Tide pool. Green sea lettuce, rockweed,and a red alga. In the pool, but hiding because of my shadow, many tiny fish.

I call it the mushroom rock. Pitted by limpets and anemones, sprinkled with barnacles.

Interface; muddy sand behind me, rocks and seaweed ahead.

~~~~~~~~~~~~~~~~~~
Despierta tu imaginación. Imagínate que el tiempo se acelera. Más. ¡Más! Más rápido! Ahora regrésate unos cuantos milenios.

Un monstruo marino se alza desde el fondo del mar al oeste del continente; se levanta hacia el cielo, humeante, hirviendo: parece una olla rebosante. Se enfría al contacto con el aire, y su cuerpo se endurece, volviéndose roca, pero aún en movimiento. El aire está helado; las rocas se cubren de hielo blanco y azul, cientos de metros de hielo. Como sigue subiendo ese monstruo, el hielo se desliza cuesta abajo, hacia el mar, crujiendo, quejándose, raspando y  moliendo mientras va llevando consigo pedazos gigantescos de roca, dejándolos al azahar cuando se derrita. Las rocas, libres del peso de tanto hielo, se rebotan, doblándose, agrietándose, abandonando más de su materia al hielo en retiro. ...

Vuelve el tiempo a sus velocidad normal. Aquí estamos. El monstruo parece dormir, bajo una cobija verde. A veces se estremece entre sus sueños.

Esta es nuestra isla, Vancouver Island, desde las cimas basálticas y las almohadillas de lava, hasta los bloques erráticos abandonados en la costa, todo cubierto de bosques y algas marinas.

A un extremo de una playa arenosa, los glaciares dejaron sus huellas ...

En las fotos, las rocas están cubiertas de algas verdes y rojas, de balanos y anémonas y lapas, los dos últimos que hacen los agujeritos en las rocas.


Saturday, July 25, 2020

Rock-hard pillows

About those lumpy rocks:

A friend sent me a link to a BC government pdf, dealing with the geologic structures of Strathcona Park, which encompasses the central part of the island at this latitude. In it, there is a good explanation of the lumps and bumps. It's pillow lava, ancient underwater lava bubbles. I'll quote from the pdf:

First, a bit of background, from that document.

"... beneath your feet lies a history stretching back 380 million years. It is a history of violent volcanic eruptions on ancient seafloors and quiet interludes when gardens of sea lilies waved in gentle ocean currents. It is a history of rocks torn and folded by the extraordinary forces which can move continents, and of mountain ranges sculpted by the immensely thick ice sheets which only vanished a few thousand years ago."

"The first volcanoes: 380 to 360 million years ago
During the Devonian Period a long gently-curving arc of volcanoes was built by explosive eruptions in the deep eastern Pacific Ocean. These undersea mountains were built up by successive volcanic eruptions and were subject to massive rock slides cascading down their slopes."

These early volcanoes were those that formed the core of the Buttle Lake region.

BC Gov. map, with my added arrow. The Buttle Lake region is that brown patch.

Now those lumpy rocks:

Karmutsen Formation
This 6500-metre-thick pile of basalt flows ... is the most abundant rock unit in the park. About half the mountains, including the highest ones, are carved from these basalts. This formation has a characteristic look from afar; being prominently layered in thick beds and forming reddish-brown dome-shaped peaks. It is also unique close up, as the pillowed form of much of the lava is very distinctive."
These pillow lavas form when basaltic lava erupts under water and is partially chilled by contact with the water. The lava thereby forms a rubbery skin through which more hot lava keeps flowing and expanding. This expansion results in ruptures of the skin and new balloon shaped buds and branches, some of which break off and roll down the slope of the sea floor to form pillows. Over time, the steady submarine eruption of lava, from cracks and fissures, built up a thick, extensive pile of these pillow lavas which totally blanketed the older rocks. They form most of the mountains west of Buttle Lake and south of Upper Campbell Lake and Elk River.
You can see the pillow shapes readily in road cuts along the mine road from about 1.5 kilometres south of park headquarters to beyond Lupin Falls.

Just another cliff face. Composite photo, focus stacked side to side. On the upper right, some pillows are visible.

All this was happening on the sea bed; the pillows formed underwater. With time, the whole shebang moved east and crumpled up to form tall mountains well above water.


I'm halfway through reading the pdf. And already it has cleared up another mystery for me. I'll post about that soon.

~~~~~~~~~~~~~~~~~~

Una amiga me envió un enlace a un documento del gobierno de BC, que explica el misterio de esas rocas redondeadas. Son lava/almohada.

Una traducción aproximada de esta explicación:

... bajo tus pies se extiende una historia que abarca 380 millones de años. Es una historia de erupciones volcánicas violentas en el fondo del mar antiguo y de intervalos tranquilos durante de los cuales jardines de crinóideos (lirios de mar, un animal del filo de los equinodermos) se mecían en los corrientes suaves del oceano. Es una historia de piedras arrancadas y plegadas por las fuerzas extraordinarias que mueven los continentes, una historia de sierras esculpidas por las inmensamente gruesas masas de hielo, las cuales apenas desaparecieron hace unos cuantos miles de años.

Los primeros volcanes: de hace 380 a 360 millones de años:
Durante el período Devónico un arco largo volcánico se formó a causa de erupciones explosivas en las honduras del este del oceano Pacífico. Estas montañas bajo el mar fueron construidas por medio de erupciones consecutiva, se moldeaban por enormes caídas de roca que se deslizaban en sus cuestas.

La formación Karmutsen
Este montón de basalto, de 6.500 metros de grueso es la unidad más común de roca en el parque. Más o menos la mitad de las montañas, incluyendo a las más altas, están formadas de estos basaltos. La formación tiene un aspecto característico vista desde lejos; siendo ordenada visiblemente en capas gruesas y formando cumbres redondeadas de color café rojizo. También de cerca es único, pues la forma de almohadas de mucho de la lava es inconfundible.

Estas lavas acojinadas (almohadillada) se forman cuando lava basáltica hace erupción bajo agua, y el agua la enfría parcialmente. Esta lava enfriada compone una corteza plástica, a manera de hule, cubriendo el flujo de lava fresca, la cual sigue fluyendo y dilatándose. Se rompe esta corteza, y se forman burbujas y nuevas ramas, algunas de las cuales se separan y ruedan cuesta abajo para formar cojines en el fondo del mar. Con el tiempo, la constante erupción submarina de lava desde grietas y fisuras contryó una gruesa capa de estas almohadilladas hasta totalmente cubrir la piedra antigua. Esta capa constituye la mayor parte de las montañas al oeste de Buttle Lake y al sur de Upper Campbell Lake y el Río Elk.

Se pueden ver claramente las formas acojinadas donde se ha cortado la roca para construir el camino desde unos 1,5 kilómetros al sur de la oficina del parque hasta más allá de la Caída Lupin.

Todo esto pasó en el fondo del mar; los cojines se formaron bajo agua. Con el tiempo, todo se trasladó al oeste, apachurrándose contra el continente para formar las altas montañas de nuestra isla.

Apenas he leído la mitad del documento, y ya se me ha aclarado otro misterio. Escribré sobre eso pronto.


Friday, November 30, 2012

Wants and wishes


...My argument is [that] because we don't understand animal consciousness, we ought to be opening our eyes to the possibility that a great range of animals, not just mammals, not just birds, maybe invertebrates are conscious as well. It seems to me that by saying we don't understand consciousness, you're not closing off animals' consciousness. You're not denying animal consciousness altogether. You're just simply saying we don't know and therefore it might exist in a much wider range of animals...

That's Marian Stamp Dawkins speaking. She is Professor of Animal Behaviour at Oxford U., and the author of Why Animals Matter. This conversation is titled, What Do Animals Want?

A couple of excerpts:
What we really need is a much more scientific basis for animal welfare than just an anthropomorphic argument. I began to think, how can you define animal welfare in a way that's scientific, that actually leads to proper evidence so the decisions we make are based on good evidence? I came up with a really very simple definition of animal welfare. Which is that the animals are healthy, and that they have what they want.... 
... there's something more to animal welfare than just not dying of a disease. That more is, in my view, what the animals, themselves, want. Do they want access to water; do they want access to cover? Do they want to be with each other? Obviously we can't necessarily give them everything they want. But we can at least find out what it is. If somebody's going to argue such-and-such improves animal welfare, I would say well, what's the evidence that it either improves their health or it gives the animals what they want? If you can't show that, then however much you think you might want it, it doesn't seem to me that it actually improves animal welfare at all.

Read the entire article (or watch the video: 35 minutes.)

And what does a dragonfly want? Supper! And it takes less than a second to catch it. Watch the Science Nation video. And don't miss the frustrated frog (about 49 seconds in); hilarious, if not so much for the frog.

How does a baby bird make his wants known? Well, sometimes, his mother gives him a password. Even before he's hatched out of the egg!
Colombelli-Négrel et al. show that superb fairy wrens go one step further by singing a specific incubation song to their in-egg embryos, which helps them to oust parasitizing cuckoo chicks that have not learned the brood's “password.” To ensure that both parents are in the know, females also incorporated their incubation song into begging calls given to their male partners, resulting in males also being more parental to chicks singing the right song.
 The entire (brief) article is at ScienceMag.org. I think registration is required, but it's free and fast, and gives you access to years of interesting science news.

And on to the wishes pretty pictures! First up; a whole passel of brilliant sea spiders. They're not really spiders, but Pycnogonids, but they sure look spidery. And yes, we have them in BC, too, but sadly (for me) not in the intertidal zone. These, for example, live at a depth of 2200 metres (1.4 miles).

Vent sea spider. Photo from Wikipedia.
Pycnogonids are so small that each of their tiny muscles consists of only one single cell, surrounded by connective tissue.
 More pics: I am always impressed by PSYL's photography; from insects to birds to scenery, he brings it all to life. He was recently working in the extreme north of the Yukon (about 1500 miles north of here, in the Vancouver area), and posted photos of a hike around Ivvavik. Beautiful country, a must-see!

My son-in-law motorcycled up to Inuvik, just a few miles east of there, this summer; did I mention that here? I followed him on Google maps. They had sent one of their trucks up the highway, and I could "stand" on the road and see the country he was driving through. I so wish I could make the trip myself!. All that wide-open space; all that brilliant colour, and the northern lights overhead!

Back to the topic at hand; PSYL's final photos are of tors. I had never heard of these; they're like huge rock walls marching across the landscape. Wikipedia explains how minerals deposited in granite cracks have persisted over millenia, while the granite eroded away to gravel, leaving the huge mineral walls behind.

One final link: someone is missing a large tub of scallop guts. Have you seen it?


Powered By Blogger