Here's one I looked at under the microscope.
He's dead; that's why he's sitting still for me. |
Zooming in a bit. He's a male he's wearing the boxing-glove pedipalps. |
I thought I could identify him by his eye arrangement, but I can't be sure; wrong angle! It doesn't matter, though; what I thought was interesting was the broken leg.
Spider legs are hydraulic. The circulatory system extends through the legs, and the pressure is voluntary. To extend a leg, the spider raises the pressure of the hemolymph (spider blood), which exerts pressure on the joints in his legs, straightening them. To retract the leg, he has muscles.
When the spider dies, the hydraulic pressure drops and the muscles shrink. This is why dead spiders have their legs contracted.
Look at the photos above: the leg in cross-section is basically a tube with a few fibres of muscle, and a wide open space for the hemolymph.
Cross-section diagram. The pale areas on the left drawing are hemolymph space; the darker mid-sections are muscles.* |
The legs are connected to the prosoma—the central body of the spider—and are almost completely filled by muscles. Due to the open blood circulatory system, all of the space between the muscles and the exoskeleton—called lacunae—is filled with hemolymph. ... the biological spider uses fluidic expansion of inflatable joint membranes to extend the legs. (From Robotics Open Access Journals *)
* Photo and quote from Landkammer, Stefan et al. “Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators.” Robotics 5 (2016): 15. (Common Access)
Oh, and this is why a little spider can take down a huge spider, in spite of her potent fangs: the smaller spider injects her venom at the weaker joints of the legs, and the poison is instantly transported throughout the victim.
~~~~~~~~~~~~~~~~~~~~
Ya que estamos mirando a las arañas, aquí está una que examiné con el microscopio.
Photos: una araña muerta, macho; se puede saber el sexo porque tiene los pedipalpos hinchados. Pensé que podría identificarlo por el arreglo de los ojos, pero no; el ángulo no me deja ver claro. Pero no importa: lo que me interesó fue la vista al interior de esa pata rota.
Las arañas dependen de presión hidráulica para mover sus patas. El sistema circulatorio se extiende hasta el interior de las patas, y el control de la presión es voluntario. Para estirar las patas, la araña aumenta la presión, y eso hace que las articulaciones se enderezen. Para retraer la pata, tiene músculos.
Por eso, cuando una araña se muere, se contraen las patas; ya no hay presión.
Mira las fotos arriba: la pata rota es básicamente un tubo con un poquito de fibra muscular, y un amplio espacio vacío donde antes había hemolinfa (sangre de araña).
La cita y diagrama que sigue son de unos científicos que están estudiando la anatomía de las arañas para aplicaciones en el campo de la robótica.
Otra cosa: esto explica como es que una arañita pequeña puede matar a una araña gigante. La arañita inyecta su veneno por medio de las articulaciones de las patas, que son más débiles, y lejos de los quelíceros de su presa, y el veneno de inmediato se propaga por todo su cuerpo.
No comments:
Post a Comment
I'm having to moderate all comments because Blogger seems to have a problem notifying me. Sorry about that. I will review them several times daily, though, until this issue is fixed.
Also, I have word verification on, because I found out that not only do I get spam without it, but it gets passed on to anyone commenting in that thread. Not cool!